

N.T.C. 2008, Capitolo 6.4 - OPERE DI FONDAZIONE

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di **stato limite ultimo**, sia a breve sia a lungo termine.

Gli stati limite ultimi delle fondazioni superficiali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno (SLU tipo GEO) e al raggiungimento della resistenza degli elementi strutturali (SLU tipo STR) che compongono la fondazione stessa.

Non è più consentita la verifica alle tensioni ammissibili (elastica)

 $\sigma_{t,\text{max}}$ = massima tensione sul terreno

 $\bar{\sigma}_t$ = tensione ammissibile terreno

N.T.C. 2008, Capitolo 6.4 - OPERE DI FONDAZIONE

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di **stato limite ultimo**, sia a breve sia a lungo termine.

Gli stati limite ultimi delle fondazioni superficiali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno (SLU tipo GEO) e al raggiungimento della resistenza degli elementi strutturali (SLU tipo STR) che compongono la fondazione stessa.

- SLU di tipo geotecnico (GEO)
 - collasso per carico limite dell'insieme fondazione-terreno
 - collasso per scorrimento sul piano di posa
 - stabilità globale
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali

Per le diverse combinazioni di carico deve risultare:

$$E_d \leq R_d$$

$$E_d = \gamma_E E \left\{ \gamma_F F_k; \frac{X_k}{\gamma_M}; a_d \right\}$$

$$R_d = \gamma_R R \left\{ \gamma_F F_k; \frac{X_k}{\gamma_M}; a_d \right\}$$

Azioni e resistenza dipendono da:

Per le diverse combinazioni di carico deve risultare:

$$E_d \leq R_d$$

Effetto delle azioni

$$E_d = \gamma_E E \left\{ \gamma(F_k) \frac{X_k}{\gamma_M}; a_d \right\}$$

Resistenza

$$R_d = \gamma_R R \left\{ \gamma_K F_k; \frac{X_k}{\gamma_M}; a_d \right\}$$

Azioni e resistenza dipendono da: azioni esterne

Per le diverse combinazioni di carico deve risultare:

$$E_d \leq R_d$$

Effetto delle azioni

$$E_d = \gamma_E E \left\{ \gamma_F F_k; \underbrace{X_k}_{\gamma_M}; a_d \right\}$$

Resistenza

$$R_d = \gamma_R R \left\{ \gamma_F F_k ; \underbrace{X_k}_{\gamma_M}; a_d \right\}$$

Azioni e resistenza dipendono da: proprietà dei materiali

Per le diverse combinazioni di carico deve risultare:

$$E_d \leq R_d$$

Effetto delle azioni

$$E_d = \gamma_E E \left\{ \gamma_F F_k ; \frac{X_k}{\gamma_M} (a_d) \right\}$$

Resistenza

$$R_d = \gamma_R R \left\{ \gamma_F F_k ; \frac{X_k}{\gamma_M} (a_d) \right\}$$

Azioni e resistenza dipendono da: geometria

Per le diverse combinazioni di carico deve risultare:

$$E_d \leq R_d$$

Effetto delle azioni

$$E_d = \underbrace{\gamma_E E}_{k} \left\{ \underbrace{\gamma_F F_k}_{k}; \underbrace{\frac{X_k}{\gamma_M}}_{k}; a_d \right\}$$

Resistenza

$$R_d = \underbrace{\gamma_R R}_{k} \left\{ \underbrace{\gamma_F F_k}_{k}; \frac{X_k}{\gamma_M}; a_d \right\}$$

Azioni e resistenza dipendono da: coefficienti parziali

Si possono adottare in alternativa due diversi approcci progettuali

Approccio 1

Si adottano due diverse combinazioni dei coefficienti parziali da applicare alle azioni (A) ai materiali (M) ed alla resistenza globale del sistema (R)

Combinazione 1: (A1+M1+R1) Combinazione 2: (A2+M2+R2)

Approccio 2

Si adottano un'unica combinazioni dei coefficienti parziali da applicare alle azioni (A) ai materiali (M) ed alla resistenza globale del sistema (R)

Combinazione 1: (A1+M1+R3)

Verifiche allo SLU

Approccio 1

Combinazione 1: (A1+M1+R1)

Combinazione 2: (A2+M2+R2)

Approccio 2

Combinazione 1: (A1+M1+R3)

Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale γ _F (ο γ _E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	γ _{G2}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3
Variabili -	Favorevole	γοι	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

Approccio 1

Combinazione 1: (A1+M1+R1)

Combinazione 2: (A2+M2+R2)

Approccio 2

Combinazione 1: (A1+M1+R3)

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
APPLICARE IL	PARZIALE		
COEFFICIENTE PARZIALE	γм		
tan φ′ _k	γ _{φ′}	1,0	1,25
c′ _k	Ye'	1,0	1,25
c _{uk}	γ _{cu}	1,0	1,4
γ	γ _γ	1,0	1,0
	APPLICARE IL COEFFICIENTE PARZIALE tan φ' _k c' _k	APPLICARE IL PARZIALE COEFFICIENTE PARZIALE $ \gamma_{M} $ $ tan \phi'_{k} \qquad \gamma_{\phi'} $ $ c'_{k} \qquad \gamma_{c'} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Approccio 1

Combinazione 1: (A1+M1+R1)
Combinazione 2: (A2+M2+R2)

Approccio 2

Combinazione 1: (A1+M1+R3)

Tabella 6.4.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali.

VERIFICA	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
	PARZIALE	PARZIALE	PARZIALE
	(R1)	(R2)	(R3)
Capacità portante	$\gamma_{R} = 1.0$	$\gamma_R = 1.8$	$\gamma_{\rm R}=2.3$
Scorrimento	$\gamma_R = 1.0$	$\gamma_R = 1,1$	$\gamma_R = 1,1$

Capacità portante della fondazione

Fondazioni superficiali

Per la valutazione della capacità portante delle fondazioni possono essere utilizzate:

- le formule d'interazione (M, N, H) dell'ANNESSO F dell'EC 8 Parte 5
- altre formule d'interazione (M, N, H) disponibili il letteratura
- la formula generale di Brinch-Hansen

Capacità portante della fondazione

Fondazioni superficiali (Brinch-Hansen)

$$\begin{split} q_{\text{lim}} &= q \cdot N_q \cdot \varPsi_q \cdot i_q \cdot d_q \cdot b_q \cdot g_q \cdot s_q + c \cdot N_c \cdot \varPsi_c \cdot i_c \cdot d_c \cdot b_c \cdot g_c \cdot s_c + \\ &+ \frac{1}{2} \gamma \cdot B' \cdot N_\gamma \cdot \varPsi_\gamma \cdot i_\gamma \cdot b_\gamma \cdot s_\gamma \end{split}$$

Capacità portante della fondazione

Fondazioni superficiali (Brinch-Hansen)

$$\begin{aligned} q_{\text{lim}} &= \boxed{q \cdot N_q \cdot \varPsi_q \cdot i_q \cdot d_q \cdot b_q \cdot g_q \cdot s_q} + c \cdot N_c \cdot \varPsi_c \cdot i_c \cdot d_c \cdot b_c \cdot g_c \cdot s_c + \\ &+ \frac{1}{2} \gamma \cdot B' \cdot N_\gamma \cdot \varPsi_\gamma \cdot i_\gamma \cdot b_\gamma \cdot s_\gamma \end{aligned}$$

contributo sovraccarico

Capacità portante della fondazione

Fondazioni superficiali (Brinch-Hansen)

$$\begin{aligned} q_{\lim} &= q \cdot N_q \cdot \varPsi_q \cdot i_q \cdot d_q \cdot b_q \cdot g_q \cdot s_q + \boxed{c \cdot N_c \cdot \varPsi_c \cdot i_c \cdot d_c \cdot b_c \cdot g_c \cdot s_c} + \\ &+ \frac{1}{2} \gamma \cdot B' \cdot N_\gamma \cdot \varPsi_\gamma \cdot i_\gamma \cdot b_\gamma \cdot s_\gamma \end{aligned}$$

Capacità portante della fondazione

Fondazioni superficiali (Brinch-Hansen)

$$\begin{aligned} q_{\text{lim}} &= q \cdot N_q \cdot \varPsi_q \cdot i_q \cdot d_q \cdot b_q \cdot g_q \cdot s_q + c \cdot N_c \cdot \varPsi_c \cdot i_c \cdot d_c \cdot b_c \cdot g_c \cdot s_c + \\ &+ \frac{1}{2} \gamma \cdot B' \cdot N_\gamma \cdot \varPsi_\gamma \cdot i_\gamma \cdot b_\gamma \cdot s_\gamma \end{aligned}$$

contributo attrito

Capacità portante della fondazione

Fondazioni superficiali (Brinch-Hansen)

$$\begin{split} q_{\text{lim}} &= q \cdot N_q \cdot \varPsi_q \cdot i_q \cdot d_q \cdot b_q \cdot g_q \cdot s_q + c \cdot N_c \cdot \varPsi_c \cdot i_c \cdot d_c \cdot b_c \cdot g_c \cdot s_c + \\ &+ \frac{1}{2} \gamma \cdot B' \cdot N_\gamma \cdot \varPsi_\gamma \cdot i_\gamma \cdot b_\gamma \cdot s_\gamma \end{split}$$

Fondazioni su pali

$$q_{\text{lim}} = q_{punta} + q_{lat} - p_{pal} - p_{attr}$$

Capacità portante della fondazione

Fondazioni superficiali (Brinch-Hansen)

$$\begin{split} q_{\text{lim}} &= q \cdot N_q \cdot \varPsi_q \cdot i_q \cdot d_q \cdot b_q \cdot g_q \cdot s_q + c \cdot N_c \cdot \varPsi_c \cdot i_c \cdot d_c \cdot b_c \cdot g_c \cdot s_c + \\ &+ \frac{1}{2} \gamma \cdot B' \cdot N_\gamma \cdot \varPsi_\gamma \cdot i_\gamma \cdot b_\gamma \cdot s_\gamma \end{split}$$

Fondazioni su pali

$$q_{\lim} = q_{punta} + q_{lat} - p_{pal} - p_{attr}$$

→ resistenza alla punta

Capacità portante della fondazione

Fondazioni superficiali (Brinch-Hansen)

$$\begin{split} q_{\text{lim}} &= q \cdot N_q \cdot \varPsi_q \cdot i_q \cdot d_q \cdot b_q \cdot g_q \cdot s_q + c \cdot N_c \cdot \varPsi_c \cdot i_c \cdot d_c \cdot b_c \cdot g_c \cdot s_c + \\ &+ \frac{1}{2} \gamma \cdot B' \cdot N_\gamma \cdot \varPsi_\gamma \cdot i_\gamma \cdot b_\gamma \cdot s_\gamma \end{split}$$

Fondazioni su pali

$$q_{\text{lim}} = q_{\text{punta}} + \boxed{q_{\text{lat}}} - p_{\text{pal}} - p_{\text{attr}}$$

portanza laterale

Capacità portante della fondazione

Fondazioni superficiali (Brinch-Hansen)

$$\begin{split} q_{\text{lim}} &= q \cdot N_q \cdot \varPsi_q \cdot i_q \cdot d_q \cdot b_q \cdot g_q \cdot s_q + c \cdot N_c \cdot \varPsi_c \cdot i_c \cdot d_c \cdot b_c \cdot g_c \cdot s_c + \\ &+ \frac{1}{2} \gamma \cdot B' \cdot N_\gamma \cdot \varPsi_\gamma \cdot i_\gamma \cdot b_\gamma \cdot s_\gamma \end{split}$$

Fondazioni su pali

$$q_{\rm lim} = q_{\it punta} + q_{\it lat} - p_{\it pal} - p_{\it attr}$$

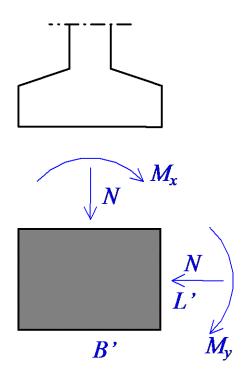
peso del palo

Capacità portante della fondazione

Fondazioni superficiali (Brinch-Hansen)

$$\begin{split} q_{\text{lim}} &= q \cdot N_q \cdot \varPsi_q \cdot i_q \cdot d_q \cdot b_q \cdot g_q \cdot s_q + c \cdot N_c \cdot \varPsi_c \cdot i_c \cdot d_c \cdot b_c \cdot g_c \cdot s_c + \\ &+ \frac{1}{2} \gamma \cdot B' \cdot N_\gamma \cdot \varPsi_\gamma \cdot i_\gamma \cdot b_\gamma \cdot s_\gamma \end{split}$$

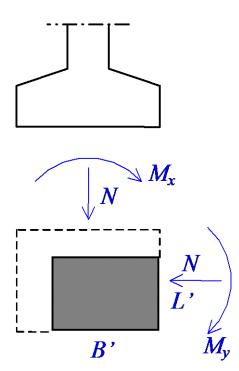
Fondazioni su pali


$$q_{\text{lim}} = q_{\text{punta}} + q_{\text{lat}} - p_{\text{pal}} - p_{\text{attr}}$$

contributo attrito

Formula generale di Brinch-Hansen

Si considera un'impronta efficace della fondazione ridotta rispetto a quella reale



Formula generale di Brinch-Hansen

Si considera un'impronta efficace della fondazione ridotta rispetto a quella reale

$$\begin{cases} B' = B - 2e_y & e_y = \frac{M_x}{N} \\ L' = L - 2e_x & e_x = \frac{M_y}{N} \end{cases}$$

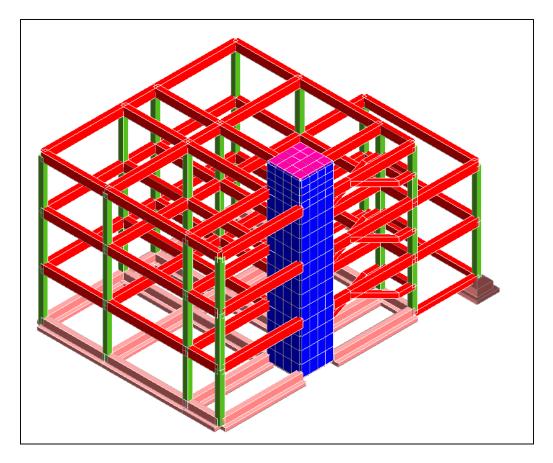
La riduzione dell'area di impronta è legata alle eccentricità dei carichi ed ha lo scopo si simulare la non resistenza a trazione del terreno

Formula generale di Brinch-Hansen: limiti

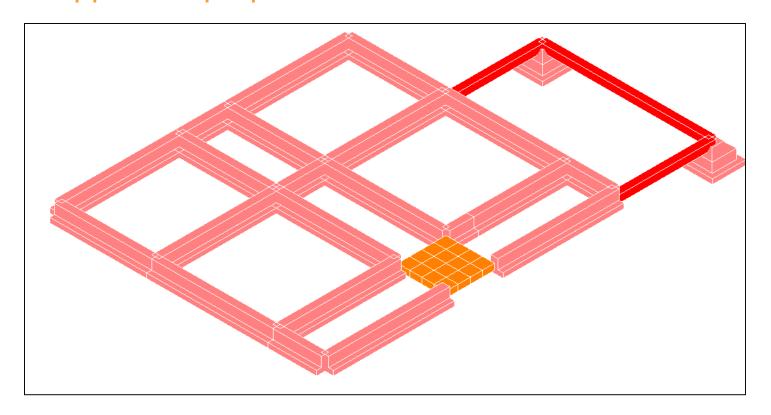
- Il comportamento non lineare e la non resistenza a trazione del terreno sono tenuti in conto in forma approssimata
- Permette la valutazione della portanza dei **singoli elementi strutturali** di fondazione e non dell'intero sistema di fondazione nella sua globalità
- Può essere applicata solo a plinti, diretti o su pali, ed a travi rovesce ma **non alle platee di fondazione**, per le quali non è corretto operare una riduzione della superficie di impronta

Nuovo approccio proposto

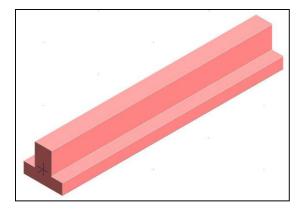
Il metodo di verifica proposto consiste nella valutazione del coefficiente di sicurezza dell'insieme terreno-fondazione


$$\lambda_u = rac{R_d}{E_d}$$
 $R_d = {
m Resistenza}$ $E_d = {
m Effetto \ delle \ azioni}$

A tale scopo è condotta un'analisi non lineare sulla sottostruttura di fondazione estrapolata dall'intero sistema strutturale


È composta da tutti gli elementi strutturali a contatto con il suolo (travi rovesce, platee, plinti) e da quelli, non di fondazione, che giacciono sul piano di posa degli elementi di fondazione

Modello intero sistema strutturale

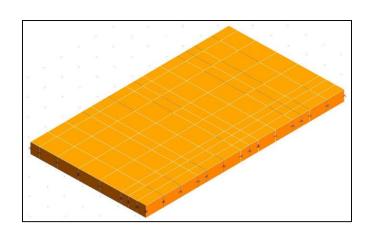

Sottostruttura di fondazione

Tutti gli elementi della sottostruttura di fondazione sono modellati a comportamento elastico lineare

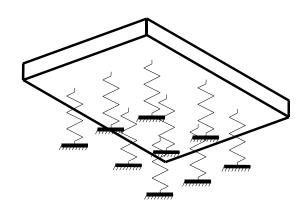
Gli elementi di fondazione sono schematizzati come poggianti su un letto di molle a comportamento non lineare

Travi rovesce

Elemento strutturale



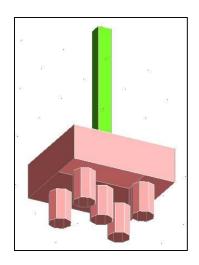
Schema statico


Tutti gli elementi della sottostruttura di fondazione sono modellati a comportamento elastico lineare

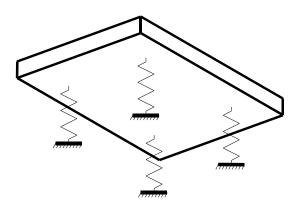
Gli elementi di fondazione sono schematizzati come poggianti su un letto di molle a comportamento non lineare

Elemento strutturale

Platee



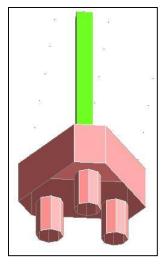
Schema statico


Tutti gli elementi della sottostruttura di fondazione sono modellati a comportamento elastico lineare

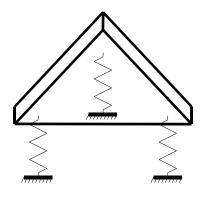
Gli elementi di fondazione sono schematizzati come poggianti su un letto di molle a comportamento non lineare

Elemento strutturale

Plinti



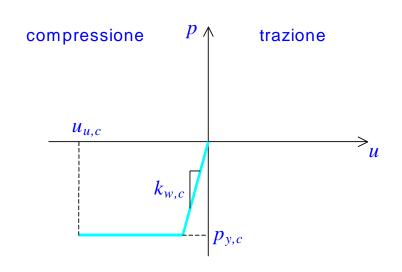
Schema statico

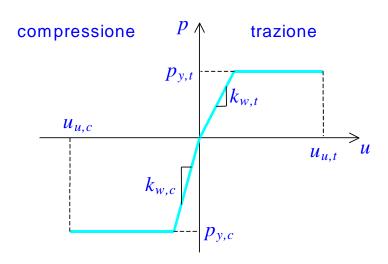

Tutti gli elementi della sottostruttura di fondazione sono modellati a comportamento elastico lineare

Gli elementi di fondazione sono schematizzati come poggianti su un letto di molle a comportamento non lineare

Elemento strutturale

Plinti


Schema statico



I legami costitutivi forza-spostamento (*p-u*) delle molle sono di tipo non lineare

Fondazioni superficiali

Fondazioni profonde

Per le fondazioni superficiali la rigidezza iniziale $k_{w,c}$ del legame è valutata a partire dalla costante di Winkler del terreno

Per le fondazioni profonde la rigidezze iniziali $k_{w,c}$ e $k_{w,t}$ sono valutate tenendo conto delle caratteristiche del terreno e della geometria del palo

Le forze di limite elastico $p_{y,c}$ e $p_{y,t}$ sono dedotte dai valore della capacità portante ultima calcolata con le normali teorie di Brinch-Hansen e Vesic non effettuando però la riduzione della superficie di impronta efficace di contatto fra fondazione e terreno

Gli spostamenti ultimi $u_{u,c}$ ed $u_{u,t}$ sono fissati sulla base di valori teoricosperimentali riportati nella letteratura tecnica Nuovo approccio proposto: analisi

Sulla sottostruttura di fondazione è applicato un sistema di forze nodali determinate come gli scarichi in fondazione derivanti dalla sovrastruttura

L'analisi è condotta facendo **crescere monotonicamente** le forze applicate sulla sottostruttura di fondazione fino al raggiungimento di uno stato limite geotecnico o strutturale

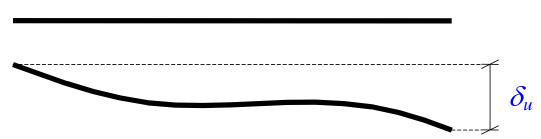
La procedura è ripetuta per tutte le combinazioni di carico previste, e consente la determinazione del moltiplicatore a rottura dei carichi, che ovviamente coincide con il coefficiente di sicurezza

Nuovo approccio proposto: verifiche

Sono tenuti in conto gli SLU tipo GEO (meccanismi di collasso determinati dalla crisi del terreno) e tipo STR (meccanismi di collasso determinati dalla crisi degli elementi strutturali)

SLU tipo GEO

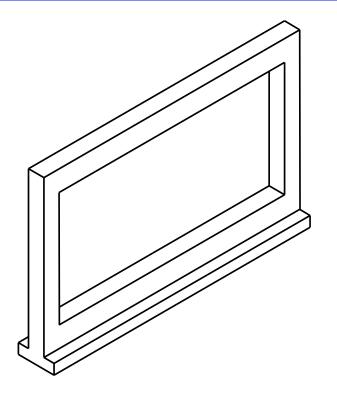
- crisi per perdita dell'equilibrio (il suolo risulta interamente plasticizzato e non è più in grado di equilibrare incrementi delle forze applicate)
- crisi per eccesso di abbassamento (sotto le forze applicate lo spostamento attinge ad un valore ultimo u_u)

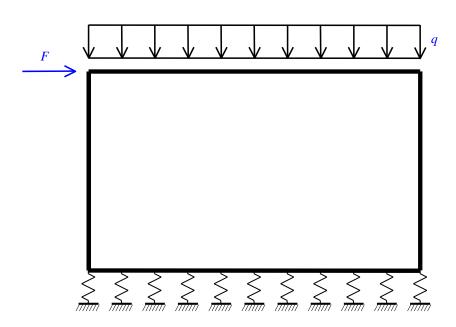


Nuovo approccio proposto: verifiche

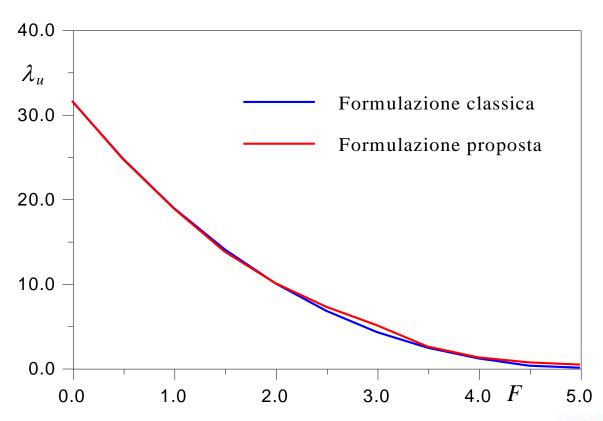
Sono tenuti in conto gli SLU tipo GEO (meccanismi di collasso determinati dalla crisi del terreno) e tipo STR (meccanismi di collasso determinati dalla crisi degli elementi strutturali)

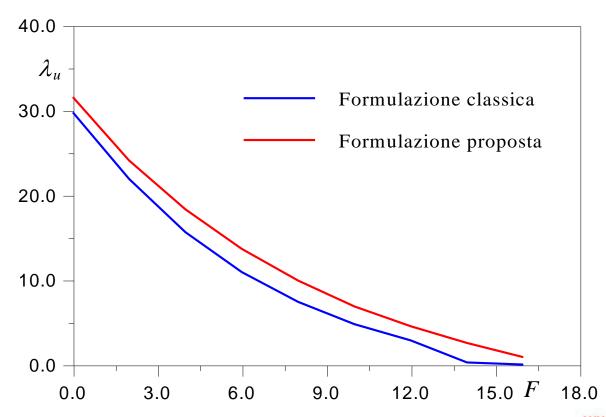
SLU tipo STR


- crisi per eccesso di spostamento relativo (sotto le forze applicate lo spostamento relativo fra i nodi di un elemento strutturale attinge ad un valore ultimo δ_u)

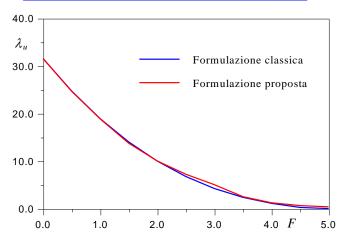


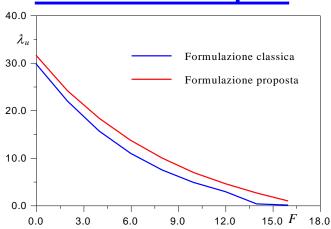
Sono state eseguite prove di validazione della procedura descritta analizzando singoli elementi strutturali di fondazione e sistemi di fondazione composti


Trave rovescia telaio ad una campata

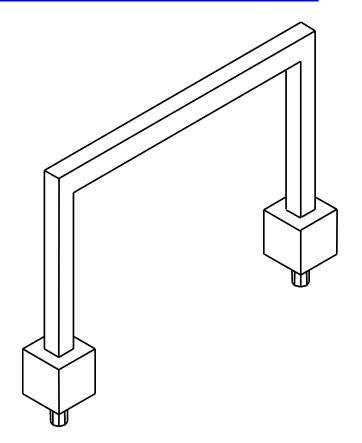


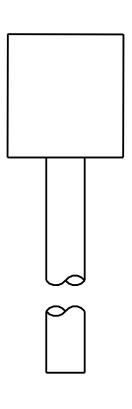
Trave rovescia telaio ad una campata



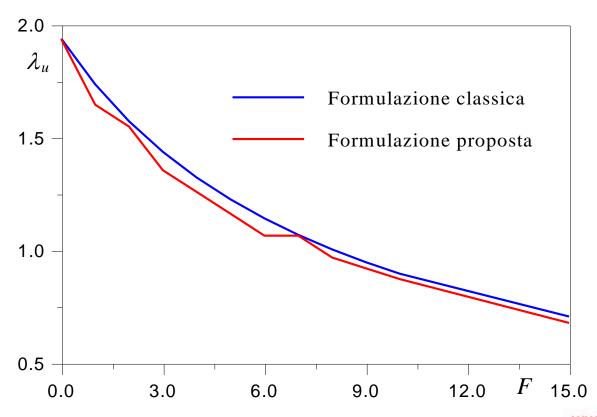

Trave rovescia telaio a tre campate

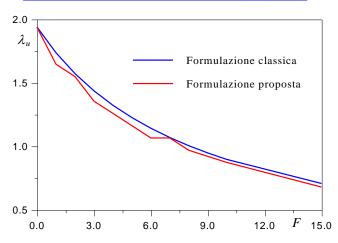
Telaio ad una campata

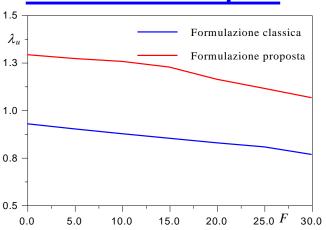

Telaio a tre campate



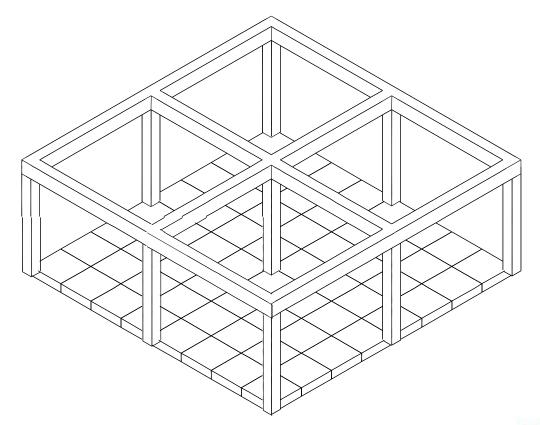
Nel caso di una singola asta si ha un pressoché perfetto accordo fra le formulazioni classica e proposta. Nel caso di più aste la formulazione proposta fornisce un coefficiente di sicurezza maggiore perché è in grado di cogliere gli effetti della ridistribuzione delle tensioni sul terreno


Plinti telaio ad una campata

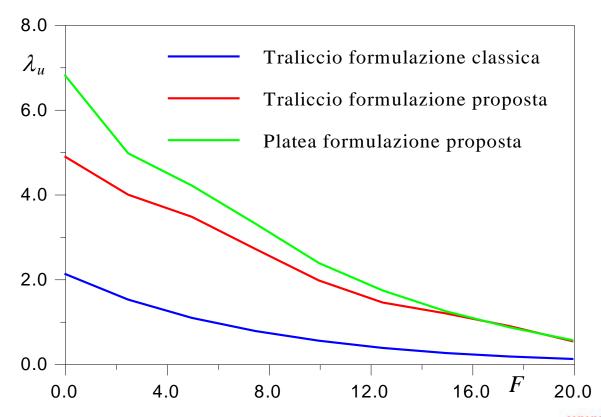

Plinti telaio ad una campata


Plinti telaio a tre campate

Telaio ad una campata


Telaio a tre campate

Nel caso di una singola asta si ha un pressoché perfetto accordo fra le formulazioni classica e proposta. Nel caso di più aste la formulazione proposta fornisce un coefficiente di sicurezza maggiore perché è in grado di cogliere gli effetti della ridistribuzione delle tensioni sul terreno



Platea di fondazione

Platea di fondazione

Nuovo approccio proposto: vantaggi

- il sistema di fondazione è studiato nella sua **globalità** e non analizzando singolarmente gli elementi strutturali che lo compongono
- si riesce a tenere conto degli effetti della **ridistribuzione delle tensioni** sul suolo di fondazione
- si riesce a tenere conto della non **resistenza a trazione** del terreno senza ricorrere a riduzioni (fortemente approssimate) dell'impronta efficace della fondazione
- non interviene alcuna complicazione nello studio di elementi di fondazione bidimensionali (platee di fondazione)

www.angelobiondi.com